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ABSTRACT 

Let G be the discrete group of orientation preserving ditfeomorphisms of the 
circle. An explicit simplicial formula on the level of the bar construction is 
given for the Elder Class of a circle bundle with structure group G. An upper 
bound for the Euler Class is obtained which, when the base space of the 
bundle is a closed orientable surface, reduces to that of L Wood. An invariant 
of circle bundles, complexity, is defined which "detects ~ the upper bound. 

Let G' be the group of  orientation preserving C" diffeomorphisms of  the 

circle S 1 and let H r be the subgroup of  those which are the identity in a 

neighborhood of  a given point of  S 1. For any discrete group G let H.(G) denote 

the integral homology of  BG, that is H.(G) ffi H.(K(G,  1), Z). In [3] I proved 

that there is a short exact sequence for 0 _-< r _-< ~ ,  r ~ 2, 

E, z--.o. 

In this paper I will 

(1) give an explicit formula for E on the chain level of  the bar construction 
on G', 

(2) identify E with the classical Euler Class, 

(3) use the formula in (1) to obtain an upper bound for the Euler Class of  a 

circle bundle with structure group G on any given C W  complex, and 

(4) define an invariant of  a circle bundle, the complexity, which detects the 

upper bound. 

My intention in this paper is to present a completely simplicial treatment of  

the Euler Class. All the analysis is very elementary and carried out on the level 
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of  the simplicial nerve of  G. The formula #oven for E in § 1 assigns 0, ½ or - ½ to 
every 2-simplex (g, h) of  the nerve of G according to an "ordering" of  
(g(o), h(o)): 

h(O) 0 g(O)o ,½ 

O h ( o )  , _½ g(O) o 

with all other configurations of (g(0), h(0)) #oven the value 0 (formula ,). Any 
cycle turns out to be integer valued (Proposition I) and the above assignment 
is well defined on homology (Proposition 2). 

Recall the theorem of J. Wood, [7]. I f  X is a closed orientable 2-manifold, 
IX] its fundamental  class and h : X---, BG any map, then - I Eh,[X] I is greater 
than the Euler characteristic of  X, t(X). The bound #oven for E in Theorems 4 
and 5 of  this paper is a simplicial version of  Wood's  theorem. 

For any space X and for any aEH2(X) I define an integer r (a)  called the 
complexity of  a which is roughly the number  of  2-cells needed to construct a. 
Then for any map h : X ~ BG the following inequality must  hold (Theorem 4): 

(1) I Eh,al  < r(a)/2. 

The right-hand side is independent  o fh  so gives an obstruction to the existence 
of  h. That such a bound exists will be seen to be a very simple consequence of  
the fact that E can be defined simplicially on the nerve of  G. 

The number  x(a) is the integer analogue of  Gromov's  norm II ]] on 
H , (X ,  R) [2]. Over the reals the bound becomes 

(2) I Eh,  I --< II II/2 
for all a ~ H2(X, R). 

I f  X is a closed surface this reduces exactly to Wood's  inequality. For take 
= [X]. Then [] X [[ = - 2 e ( X )  (see [2]), and (2) becomes - [Eh.[X][ _-_ 

e(X). So this is the best available bound which would work for spaces. 
We finally reformulate our theorem in a way that makes more sense over 

general spaces, for it does not depend on a choice of  a. Consider the affme 
subspace E h ,  ~( 1 ) c H2(X, R). Define the complexity of  a bundle ~, over X, x(~,), 
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to be the inf of  the norms of all the elements in this space. I will show (and it is 

an easy consequence of (2)) that if ~ reduces to a bundle with discrete structure 

group then x(y) >= 2. 
This work was completed and first presented while I was a visitor at The 

Hebrew University of Jerusalem. I am very grateful to the Mathematics 
Department, and to Prof. Emmanuel Farjoun, for their support. 

1. An invariant e : H~(G) ~ Z 

Let G stand for any of the groups G r. Recall the construction of  the 

simplicial nerve of  G. N G  : k ~ NkG is a simplicial set with k cells (g~, . . . .  gk), 

g~ ~ G, k > 1 and one 0-cell. The faces are given by 

a o ( g , , . . . ,  = ( g , - ' g 2 ,  • • • ,  

O~(g~,. . . , g k ) = ( g ~  . . . . .  g i , ' ' ' , g k ) ,  l < i < k .  

The degeneracies tr~ : NkG ~ Nk +~G are given by 

a~(g, . . . .  , gk) = (g, . . . .  , g,, g, . . . . .  gk). 

I N G  [ = B G  = K ( G ,  1) so the homology H , (G)  is given by the homology of  the 
simplicial set N G .  This is the classical bar construction. 

Now consider a pair (g, h) E G X G. Lift g and h to orientation preserving 

periodic diffeomorphisms of  R, g, 1~ so that $(0)~ [0, 1) and/~(0) ~ [0, 1). 

FORMULA *. Set 

e(g,  h) = ½ i f0  < g(0) </~(0), 

e ( g , h ) =  - ½ i f 0 < / ~ ( 0 ) < g ( 0 ) ,  

e(g ,  h) = 0 in all other cases. 

Extend e to a homomorphism from C2(G) = free abelian group on G X G to 

Q. A cycle z E Z 2 ( G )  c C2(G) is given by z = Zp_~ (gi, hi) satisfying 

(gi-lhi - hi d- g i )  = O. 
i - I  

A boundary w E B2(G) is a sum of cycles of the form 

( g - ~ h , g - X k ) - ( h , k )  + ( g , k ) - ( g , h )  

and 

H2(G) = Z2(G)/B2(G).  

There is a well def ined h o m o m o r p h i s m  e:  H 2 ( B G ) ~ Z  THEOREM 1. 

defined by ,. 
This will follow from 

PROPOSITION 2. For  z 6Z2(G), e ( z )  is an integer.  
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PROPOSITION 3. For z EB2(G), e(z) = O. 

To verify Proposition I first note that if  z = 2;p_, (g,., hi) is a cycle, then n is 

even. If e(g,  h~) = + ½ for a given i then none of the faces g~-~hi, gi or hi has a 
fixed point at [0] E R / Z  = S ~. On the other hand, if e(g ,  h~) = 0 either one or 
all three (in any case an odd number) of  faces has a fixed point at [0] 6 S  ~. Since 

the faces with fixed points must cancel among themselves, the number of 

(gi, hi) with e(g ,  h~) = 0 must be even. So the number of (g ,  h~) with e(g ,  h~) = 
+ ½ must also be even, proving the first proposition. 

The fact that the invariant e does not bound, i.e. that Proposition 2 is true, 

can be deduced from results in [3]. But to make the construction of  e self- 

contained I will prove Proposition 2 directly. 

To prove Proposition 2 it must be shown that for all g, h, k 

(e[(g-lh,  g -~k  ) - (h, k)  + (g, k)  - (g, h)]) = 0. 

There are several cases to verify. I will check the typical ones and leave the rest 

to the reader. By then the essential points will be evident. 
Suppose that 0</~(0)</~(0) .  If g - l ( 0 ) = 0  then e ( g - l h , g - l k ) = ½ ,  

e(h,  k)  = ½, e(g, k) = 0 and e(g, h) = 0 so that e = 0. 

~ ~ ~ , , " ~  g-l~(O)=g~'k(O) 

" ~(0) ~(0) i ~ ~6(O)=g-~h(O) 

S o  assume  g- l (O)  =/: O. Then g":'- ~h'(O) and g~-~(O) are related in one of  the 

following ways: 

- I  

~"/i'(o) 
(a) o < g":'-'h'(o) < < l 

! 

~(o) ~(o) , ~(o) 
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(b) 0 <g~- '~(O) <g~-x/~(O) = 1 

(c) 0 < g - ' ~ ( 0 )  < g~-'~(O) < 2 

~(o) £(o) 

~r ~(o) £(o) 

(d) 1 -- g~-~,~(O) < g~-'~(O) < 2 

J 
- 

A A 

v V 

(e) 1 < ~ ' ~ ( o )  < ~ '~ (o )  < 2 

The  following equat ions  a n d  inequali t ies  and  cor responding  values o f  e are 

evident  f rom the above graphs. 

Case (a): 0 < g - ' h (O )  < g-~k(O)---," e ffi ½ 

0 < ~(0) < ~(0) -,. e -- ½ 
0 < £(0) < ~(0) --* e = - ½ 

0 </~(0)  < oa(O) ~ e -- - ½. 
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So e -- 0 in this case. 

Case(b): g-~k(O)--O ~ e = O  
0<~(0)----~(0)~e----½ 
g(O)=~(O) ~ e = 0  
~ (0 )<~(0 )  - - - e = - ½ .  

So e -- 0 in this case. 

Case(c): O<g- lk (O)<g- lh (O)~e=-½ 
0 < £ ( 0 ) < ~ ( 0 )  - - - e l ½  

0 < ~ ( 0 ) < ~ ( 0 )  - - - e=½ 
O<~(O)<g(O)  - - - e = - ½ .  

So e = 0 in this case. 

Case(d):  
N 

g - t h ( 0 ) - - 0  - - e  = 0  
0 < ~(0) </~(0) ~ e = ½ 
0 < ~(0) </~(0) --- e -- ½ 
~(0)  = /~ (0 )  ~ e --  0. 

So e -- 0 in this case. 

Case (e): 0 < g - l h ( 0 )  <g-Ik(O)~e  = ½ 
0 </~(0) </~(0) ~ e ffi 

0 < ~(0) < ~(0) -* e -- ½ 
0 < ~(0) < / l (0 )  ~ e -- ½. 

Now if instead 0 </~(0) < ~'(0), an exact case by case analysis again shows 

e - - 0 .  
Finally, the cases ~(0) = ~(0), and ~(0) -- 0 or ~(0) -- 0 can all be verified by 

the same procedure as above. 

2. Identification of the invariant e with the Enler Class 

In this section I will explicitly construct a cycle z ~ Z2(BG) whose associated 
homology class [z]EH2(BG) satisfies e[z] = 1. To do this I will define a 

homomorph i sm f :  ~t(M)--* G, for M a closed surface. This will induce a map  
f:  M--* BG and then [z] will be f . [ M ]  for M the fundamental  class of  M a n d f .  
the induced homomorph ism H2(M)--*H2(BG). Now there is an induced 
bundle over M,  ~(f) ,  with structure group G and hence a corresponding Eulcr 
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Class X0'(f))  : H2(M) ---- Z.  I will show that - xO'(f))[M] = 1 for the particu- 
lar [z] I construct. 

Now every element o f / /2  of  any group G can be represented as a sum of 
classes of the form g,[X] where X is a closed orientable surface and g ,  is 
induced by a homomorphism g:  7tl(X)--- G. (See for example the construction 
of / /2  of  a group given in [6].) As a consequence X can be considered to be a 
homomorphism H2(BG) ---- Z.  I will show that e = - X. To make this identifi- 
cation I will use J. Wood's algorithm for computing X, [7]. 

CONSTRUCTION OF [Z]. Consider SL(2, R) as a subgroup of  G by letting it 
act on the set ofunoriented lines in R 2 which can be identified with SL Namely 
if  

then 

+ dy/ 

and as a diffeomorphism takes the line with slope z = y/x to the line with slope 
cx + dy/ax + by = c + dz/a + bz. 

Let 

Q - ( 1 0  11), R ~ ( 2  0 1/0~), S - ( ;  01)" 

Consider the commutators  [Q, R] = A and [S, R] = B. Then 

Furthermore 

which as a ditfcomorphism of  S ~ is rotation by 180 ° and 

1 
(ABA )(ABA ) -- ( 0 - 

which as a diffeomorphism of S ~ is the identity. 
The equation ABAABA--1 determines a homomorph i sm f :  ~ ( M ) ~  G 

where M is a surface of  genus 6. To construct f , [ M ]  consider the chains 
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cl = (Q-'R-~, R- 'Q-1)  _ (R-~, Q) + (Q-', R) + (1, R)  + (1, S) - (1, 1), 

c 2 = ( S - ' R - I , R - I S - I ) - ( R - ' , S ) + ( S - 1 ,  R)+(1,  R ) + ( 1 , S ) - ( 1 ,  1), 

c3 = (.4, AB) + (AB, ABA) - ( l ,  B) - (1, A), 

OCl = A, Oc2 = B 
and 

dc3 = A + B + A - ABA = 2A + B - ABA. 
Now 

c4 = 2(cl + c2 + Cl - c3) = 4Cl q- 2c2 - 2c3 

satisfies 0c4 = 2(ABA) --~ 2T where T is rotat ion by 180*• Set 

z = - (c4 - (1, T) - (1, 1)). 

Then z is a cycle which i s f , [ M ]  as the following diagram easily shows. 

• ~ 2 G  

Now to compute e[z] note that  all o f  the 2-simplices making up this cycle 

except (S -  IR - 1, R - IS-  ~) of  c2 have at least one face with a fixed point at 

[0] E R/Z.  So e -- 0 on all these simplices. On the other hand 

and 

S - I R - t ~ (  1/x/~ x//~ ) 
- 2 / v / ' ~  

R - ' S - ' = (  1/x/~_ 2Ix~" ~ x/~) 

which is z ~ 2z - ½ 

which is z - - 2 z  - 4. 
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This means S -  JR - ~(0) > R - ~S- ~(0). 
So e(S-  ~ R -  ~, R - ~ S -  ~) = - ½ and 
e[z] ffi 1 as claimed. 

THEOREM 2. 

(a) e:  H2(BG) ~ Z is an epimorphism. 
Co) e ffi E where E is the invariant of[3]. 
(c)  e f f i  - z .  

½ 

PROOf. The construction of z above proves (a). For Co) I will make use of 
the constructions in [3]. E is the homomorphism induced on //2 by the 
projection of BG on the "component complex" I ~t,[ (see [3], §2), followed by 
the isomorphism 

t h a t  is, 

H~(I ~ ,  1)-7" Z ([31, lemma 5); 

E" H2(BG) e--L-. H2([ it, I)-X Z. 

The 2-cycle a ffi (~, ]) - (], ]) is a generator of//2( 1 l t ,  I ) which maps to 1 under 
the isomorphism. Now a straightforward calculation shows that 

P ( [ z ] )  = 2 . ( ] ,  ])  - (],  o )  - (o,  ]). 

Furthermore P([z]) is homologous to a in Ire, [: 

o(t ,  o, ½) --  (~, t) + (t,  ]) - (o, ]) - (~, o) 

g i v e s  P ( z )  - 0(] ,  0,  D = ~. 
So E([z]) -- E([a]) -- 1 -- e([zD. 
I have proved that e and E agree on the homology class [z] EH2(BG). The 

following argument will show they agree on all of H2(BG). 
The construction ofz  defines a left inverse for E.  So the main theorem of [3] 

becomes 
H2(G) ~ Z • 1-12(1-1) 

and any homology class [w] EH~(G) can be uniquely written 
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[wl f f in .E([z] )+[w]  for n E Z ,  [wlEH2(H). 

e = E on ([z]), hence on [w] and this proves (b). 

NOTE. J. Mather has proved that H2(H °) = 0, [4], so in the C o case e and E 
give isomorphisms H 2 ( B G ) ~ Z .  On the other hand, the existence of  the 
Godbillon-Vey invariant implies that H2(B r) ÷ 0 for r > 2. 

To prove (c) I will identify e with the invariant WofJ.  Wood (see lemma 2.1 
of [7]) which is actually an algorithm for computing X- W is easy to compute 
for the homomorphism 7h(M)-~ G defined by ABAABA ffi 1. 

The lifts ,4 and B of A and B have fixed points at 0ER,  B satisfies 
/~(0)~(0, ½). So/i/~/i(z) = z  + ½. Then Wffi 1. Now W--  - X ,  which is the 
algorithm of Wood, and this proves (c). 

3. A bound for the Euler Class 

I will begin this section by stating that part of  the theorem of  J. Wood ([7], 
theorem 1. l) which gives an obstruction to reducing the structure group of a 
circle bundle over a closed surface to a discrete one. 

Here is the set up. Let G be any of  the groups G r and let G=op be the group G 
with the C' topology. Suppose there is given an oriented S 1 bundle 3' with 
structure group G,op over a closed oriented surface X. This is equivalent to 
being given a classifying map 3' : X - , .  BGw (defined up to homotopy). It is well 
known that up to homotopy BGtop = 8 S  1 = K(Z, 2) so there is an isomorphism 

x :  op) - -  Z 

which can be thought of as the universal Euler class. 
Now if the given Gtop bundle reduces to G there is a classifying map gT: 

X - *  BG and a commutative diagram 

X ~ ~ BGtop 

o\ 
BG 

where the vertical arrow is induced by the identity G ~ G~p. 
On homology the following commutes: 
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H2(X) r , ,  H2(BGtop) , Z 

H2(G) 

(Recall for a discrete group H the notation is H2(H)= H2(BH) which is 
H2(K(H, 1).) Let e(X) stand for the Euler characteristic of X and [X] for the 
fundamental class of X. 

THEOREM 3 (Wood). I f  ~, : X - - - ,  BGtop factors through g7 : X ~ BG then 

I egT,[X] I _-< e(X). 

4. Complexity and simplicial versions of Wood's theorem 

I will prove versions of Wood's theorem for any connected topological 
space. Consider the subcomplex of singular chains on X, C,(X), consisting of 
those simplices mapping all vertices to a given base point of X. We can define a 

"norm" II " II z on C,(X) by II ~ II z - -  z I mi I where c = X m,ai. Then on 
H,(X)  define 

I I"  II z -- inf( II c II z, c is a cycle representing a). 

This is a restriction of Gromov's norm; it is the smallest number of 2-cells 
needed to build a, counted according to their multiplicities. Note that the 
simplicial set S(X) c S(X) of singular simplices mapping vertices to a base 
point is weakly homotopy equivalent to the full singular complex so that the 
homology of C,(X) computes H,(X).  

THEOREM 4. Let X be a connected topological space and a E H2(X) an 
arbitrary homology class. Let g : X ---, BG be any continuous map. Then 

l eg,a I < II ~ II z/2.  

PROOF. First note that since BG is a K(G, 1) there is a 1-1 correspondence 
between [X, BG] and Hom(n~(X), BG). On the other hand n~(X) is given by 
the free group on 1-simplices of S(X) modulo relations coming from 2- 
simplices, so each element of Hom(n~(X), BG) induces a simplicial map from 
S(X) to BG and conversely. Hence there is a 1-1 correspondence between 
homotopy classes of continuous maps [X, BG] and homotopy classes of 
simplicial maps [S(X), NG]s. 

In particular the map g in the statement of the theorem is homotopic to the 
map induced on realizations by a simplicial map g from S(X) to NG. Let 
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z = Z mizi be a cycle representing a so that I mll + • • • + I mn I is as small as 
possible. Then 

I eg.a[ = [F~mleg.(zi) I = El mteg,(zt) l < EI mil I eg.(zi)l.  

Each element eg,(zg) is ½, - ½, or 0. Therefore 

l eg .a  I --< m, I/2 = II - II/2. 

This proves Theorem 4. 

The complexity o f  a circle bundle. The statement of Theorem 4 would be 
more satisfactory if there were a single "test element" fl so that if the inequality 

Ieg,# I --< II # II/2 holds for fl then it holds for all a E H2(X). To make such a 
choice possible requires passing to real homology. 

Consider the real singular chain complex, but constructed only out of 
simplices mapping all vertices to a base point. Let H . ( X ,  R) be the associated 
homology groups. The homomorphism e extends to a homomorphism 
eR:H2(X, R)---R. For any a EH2(X, R) there is the Gromov norm, con- 

structed as before, II II. 
I will define an invariant x(~,) of a circle bundle ~, over X called the 

complexity of~,. Consider the affine subspace e~ 1(1) c H2(X, R), assuming it is 
not empty. Let x(7) be the inf{ II z II, z ~e£1(1)} • 

THEOREM 5. Let X be a connected topological space and ~, a circle bundle 
over X. Suppose ~, reduces to a bundle with discrete structure group G. Then 
xO') > 2. 

PROOF. Theorem 4, adapted to real homology, gives 

II-  I I / l eh .a  I > 2 

where h is the classifying map of ~, and a is any element of H2(X, R). Or 

II ~/eh.~ II >-- 2 for all aEH2(X ,  R). 

In particular, any demen t  in eft 1(1 ) satisfies this inequality, and this proves the 
theorem. 

5. An application to foliations 

THEOREM 6. Assume that X is a differentiable manifold. Let y be a circle 
bundle over X and let x(~,) be its complexity. I f  x(~,) < 2 then there is no 
codimension- 1 foliation on the total space o f  y transverse to the fibers. 
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This follows directly from Theorem 5 and the fact that foliating the total 
space of 7 transverse to the fibers is equivalent to factoring the classifying map 
of y through BG; s¢¢ [7]. 
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